
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 12, DF,CEMRER 1985 1323

Effects of Side-Wall Grooves on
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.4bstract —The use of suspended striplines is becoming an important

transmission-line technique at millimeter wavelengths because of low at-

tenuation, weak dispersion, and various merits in manufacturing processes.

This paper estimates the effects of side-wall grooves of tlhese lines on

transmission characteristics within the TEM wave approximation.

I. INTRODUCTION

sUSPENDED STRIPLINES (SW’S) have become very

useful for millimeter-wave transmission recently (as

discussed in the workshop on SSL filters in the 1984

International Microwave Symposium) because of their low

attenuation, weak dispersion, and moderate wavelength

reduction factor compared with microstrip lines, and vari-

ous merits in manufacturing processes. The planar config-

uration also makes SSL’S suitable for integration into millim-

eter-wave systems [1].

The transmission characteristics of SSL’S as shown in

Fig. 1 have already been analyzed both for thin-strip cases

[2] and thick-strip cases [3]. However, effects of side-wall

grooves, which have recently been employed in practical

SSL’S to support substrates mechanically, as shown in Fig.

2, have not been estimated theoretically, except a trans-

verse resonance analysis [4] in which the cutoff frequency

of the TEIO type mode has been calculated. In the case of

finlines, the effects of grooves on hybrid-mode transmis-

sion have been estimated by using the mode-matching

method [5]. The applications and technology of suspended

striplines at millimeter wavelengths have been well de-

scribed in other literature [6], [7].

This paper shows the method and results of the quantita-

tive analysis of such effects, particularly on the characteris-

tic impedance and wavelength reduction factor.

II. METHOD OF ANALYSIS

The present analysis of transmission characteristics of

SSL’S with side-wall grooves is carried out within the

TEM-wave approximation since the weak dispersion of the

dominant mode is expected because of the existence of two

air regions. The past methods using Green’s function [2],

[3] cannot be applied to this structure because of its

irregular shape.
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The solution of Laplace’s equation is first assumed for

each of the three regions in Fig. 2. The strip conductor is

assumed to be infinitely thin. Potential functions which

satisfy boundary conditions at the surrounding conductor

surface can be written in the form of Fourier series as
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When potential functions at y = hl – O, y = hl + O, y=.

hl+ hz –O, and y = hl+ h2+0 are given by ~l(x), f2(x),

f3(x), and fA(x), respectively,(l)-(3) lead to the Fourier
series expansions of these functions. The Fourier coeffi-

cients A., B., C., and D. are uniquely determined after

knowing these functions. The variational method is used to

find the form of these functions.

We use the fact that the total electric-field energy W of

this structure per unit length is given by

where S’, (i =1,2,3) denotes the cross-sectional area and c1

(i= 1,2, 3) the dielectric constant of the region i. This

energy can be minimi~ed by varying the form of the above

potential functions at y = hl and y = hl + h ~ as trial

functions. The minimized energy W& is related to the line

capacitance C by

Wmin= ;(2V2 (5)
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Fig. 1. Suspended striplines without side-wall grooves.
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Fig. 2. Suspended striplines with side-wall grooves.

where Vdenotes the potential difference between the strip

and wall conductor. Then, the characteristic impedance Z

and the wavelength reduction factor A/A ~ within the

TEM-wave approximation are given by

‘=“o& (6)

(7)

where u, is the velocity of light in vacuum and Co is the

line capacitance for the case c1 = Cz = c~ = co.

III. TRIAL FUNCTIONS AND VARIATIONAL

FORMULATION

Because of the symmetry of the structure, the potential

functions have also even symmetry, and only one half of

the structure has to be treated. The above four functions in

the right half are mutually related as

fl(x)=f2(x)

=f(x) (O<x+ y=q-o ) (8)

f,(x)=o (;<x<;+d,y=hl+o ) (9)

f3(x)=f4(x)
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Applying (8)–(11) to (l)–(3), we obtain the Fourier

series whose coefficients are given by
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Now, we choose the first-order spline function (or the

polygonal line function) as trial functions to express f(x)

and g(x) as given below, and as shown in Fig. 3, because

the spline function has a simple form and is useful in

approximating complicated curves

f(x)= ~ q(x)
1=()

g(x) = ~ G,(x)
,=,

where

(0 (elsewhere)

1

qJ+l–qjx+ qlbl+l–q, +lbl

bj+l – bj b
G,(x)=

,+l-bj

(b, <x<b,+,)

(16)

(17)

(18)

(19)

~0 (elsewhere)

and the values of knot potentials of the trial function are

denoted by p, (i= 0,1,. . . , rnl+l) for f(x), and q, (j=

0,1,. ... m z +1) for g(x) at the knot positions a, (i =

0,1,. . . , ml +1) and b, (j= 0,1,. ... m, +1), respectively.
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Fig. 3. The form of trial functions. (a) The first-order splioe function as
the triaf function for ~(x). (b) The first-order spline function as the
triaf function for g(x).

The total electric-field energy after the integration (4) is

given by

m ml mv m, ,

i= Ok=O j=ok~o - “

ml m2

‘2X XYijPiqj (20)
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where symbols aik, ~1~, and IIi, are defined in the Appen-

dix.

This energy expression includes a group of knot poten-

tials (po, pi,.””, pml, qz, q3,’” “,~d q~2) as new vari-

ables and remaining knot potentials ( p~l + 1, qo, ql, and

q~z+ J aS COIMt@. ‘These new v~ables are adjusted to
satisfy the following conditions to obtain the minimum of

m
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By imposing these conditions on the energy expression

(20), we obtain a set of linear, simultaneous, inhomoge-

neous equations as shown below which are the final equa-

tions to be solved on a computer
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Fig, 4. The numerical convergence property of the characteristic imped-
ance. w/b =1.0, hi/b =0.4, h2/b =0.2, h3/b =0.4, t =d=O, c*=

1.0.

Since the knot potentials are known after solving these

equations, the minimum value of the electric-field energy is

found by substituting these values into (20).

V. NUMERICAL PROCESSING AND ACCURACY

The numbers of the knots of the trial function ml and

m z play an important role in determining the required time

for computation and accuracy. Since g(x) changes sharply

compared with ~(x), m z is necessarily larger than ml. ml

and m ~ can be minimized by taking the following mea-

sures.

1) The sizes of ml and m z are increased when those of

a/2b and (a – ~)/b are increased, respectively.

2) The knots of the spline function for g(x) near the

strip conductor are narrowly spaced to represent potential

curves precisely. Fig. 4 shows the convergence property of

the impedance values for increasing the sum of the two

values m = ml + m2. The effect of the number of the

Fourier series terms N is less important when N is larger

than 100. Typical values of these numbers in the present

analysis are: ml= 7, mz =13, and N =100.

The accuracy of calculated transmission parameters can

be examined by comparing numerical results for the case

of d = O by the present method with those by the previous

method [2]. Fig. 5 inycates that both methods result in

good agreement with the discrepancy by approximately 0.1

percent. This agreement is due to the fact that A/A o is

expressed by {~, in which capacitance errors are

mostly cancelled.

Fig. 6, on the other hand, indicates that there is a

discrepancy of about 2 percent between the impedance

values calculated by the two methods. This is naturally
attributed to the expression of the characteristic impedance

inversely proportional to ~. However, because of the

nature of the present and the previous variational method,

it can be stated that the exact values of the characteristic

impedance exist between these two curves. The time re-

quired for computing a set of impedance and the wave-
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Fig. 5. A comparison of A/AO values by the present method (solid line)
with those by the previous method (dashed line) for d = O. w/b= 1.0,
hi/b = 0.4, h2/b =0.2, h3/b=0.4, t = d= O, c“ = 3.78.
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Fig. 6. A comparison of Z values by the present method (solid line)
with those by the previous method (dashed line) for d = O. w/b= 1.0,

hi/b= 0.4, h2/b= 0.2, h3/b=0.4, 1= d= O, c*= 3.78.

length reduction factor was about 1 s on a HITAC-M180

computer.

VI. NUMERICAL RESULTS

Since the common values of the characteristic impedance

are 50 Q and 75 !2, the structural dimensions of the SSL’S

in this paper are also selected by considering these values.

Relatively high walls are treated in order to see the strong

effects of side-wall grooves. For Duroid (the dielectric

constant C* = 2.22) used as substrates, the following di-

mensions are used:

a/b =1.0 hi/b = 0.4 hz/b = 0.2 h3/b= 0.4

t=O.O w/b= O.2-O.9 d/b= O.O- O.5.

The results of numerical calculations are shown in Figs. 7

and 8. When the depth of grooves is increased, the char-

acteristic impedance and wavelength reduction factor are

also increased rapidly but eventually no more effects are

observed in the region of deep grooves. The flatness of

these curves is important since it assures us the exactness

of our method. Because groove effects are significant in the

range of small d, these can not be neglected when precise

t 0.5
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,0 ~
o.. 0.4 0.5
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Fig. 7. Side-wall groove effects on the characteristic impedance Z.
a/b =1.0, hi/b= 0.4, h2/b= 0.2, h3/b= 0.4, t = O, c*= 2,22.

1 w/ b= O.6.
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Fig. 8. Side-wall groove effects on the wavelength reduction factor
~/Ao. a/b= l.0, hl/b=0.4, hz/b=0.2, h3/b= 0.4, t = O, C*= 2,22.
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Fig. 9. Side-wall groove effects on the characteristic impedance for
substrates of various dielectric constants. a/b = 1.0, hl /b = 0.4, h2/b
=02, h3/b=0.4, t=O.
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Fig. 10. Side-wall groove effects on the wavelength reduction factor for
substrates of various dielectric constants. a/b= 1.0, hl /b = 0.4, hz /b
= 0.2, h3/b=0.4, t= O.

filters are designed. In order to avoid these effects, very

low side-walls (b< a) must be. employed. However, it

should be noted that the width a also determines the

lowest cutoff frequency. Figs. 9 and 10 show the effects of

the grooves on transmission characteristics tith the dielec-

tric constant of the substrate as parameters.

This method of analysis is .si”mple and efficient in

numerical computation, and cad be applied to a variety of

‘planar configurations as shown in Fig. 11.

APPENDIX ‘

The symbols in the energy expression (20) are defined as

follows:

(a)

. . .

(b)

Fig. 11. Possible generahzed structures for applying the present analysis
method. (a) Coplanar SSL’S. (b) SSL copplers.
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